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INTRODUCTION 

Little experimental work has been published on 
the stress relaxation phenomena arising when a 
steady viscous flow of a molten polymer is suddenly 
stopped. Moreover, an analytical evaluation of 
the relaxation data based on the determination of 
the relaxation spectra by means of inverse Laplace 
transforms has the following drawbacks: (a)  it 
requires long calculations, and actually the accuracy 
and reproducibility of the experimental data, as 
well as their extent, are not sufficient for a complete 
analysis, nor are they adequate to the importance 
of the analytical procedure; (b)  it is based on the 
use of linear models, such as the Voigt or the Max- 
well bodies, while in general the actual physical 
systems are far from being linear. Consequently, 
at  a given temperature, the relaxation spectrum 
depends on the stress to which the specimen is sub- 
jected ; therefore, the polymer characterization be- 
comes even more complicated. 

The writers have done a great deal of experimen- 
tal work on molten polymers using a Kepes con- 
sistometer,lS2 an instrument which appears to be 
particularly fit for stress relaxation investigation. 
On this experimental basis, an evaluation of the 
elastic components of molten polymers will be sug- 
gested here, which can be carried out without the 
determination of the relaxation spectra. 

THE VISCOELASTIC PARAMETERS 

Attention has been already drawn by Ferry3 to 
the opportunity of considering the elastic energy 
stored within a molten macromolecular system as a 
consequence of a steady viscous flow. In this 
way, the following parameters are defined. 

1. The steady flow viscosity qo = ro/y0, where 
ro = stress, yo = rate of shear (here and in the fol- 
lowing the subscript zero means quantities related 
to the steady flow). 

2. A stored elastic energy (per cubic centi- 
meter) : 

W = J,’” rdy (1) 

In a Hookean elastic system, where the strain y is 
proportional to the stress r,  a steady state compli- 
ance J ,  can be defined, such that 

W = JW7o2/2 (2) 

y = J w r  (3) 

X w  = Jwqo (4) 

when 

(3) A relaxation time: 

It is immediately seen that the ratio of the stored 
elastic energy W ,  defined by eq. (2) ,  to the power 
P = +,TO = 70*jo2 dissipated in the steady viscous 
flow is 

W / P  = Jwq0/2 = X,/2 

We can define, in this way, a single energetically 
equiralent Maxwell body composed of a Hookean 
spring with a compliance modulus J,, coupled in 
series with a dashpot with a Newtonian viscosity 
v0; such a body stores the same amount of elastic 
energy under the same steady viscous flow defined 
by a uniform rate of shear yo corresponding to the 
stress 70 = 70*j0. 

In general such quantities are expected to be de- 
pendent on the flow conditions, namely tempera- 
ture and rate of shear, and hence on the steady 
state stress TO.  

An actual determination of J ,  and of X, is pos- 
sible only if the stored elastic energy W can be cal- 
culated. An evaluation of such energy will be 
tried here on the basis of the experimental stress 
relaxation graphs r = .f(t) representing the relaxa- 
tion stresses as functions of the time t. It is to 
be remembered that for real viscoelastic macro- 
molecular systems the ordinates corresponding to 
an abscissa “t” of two functions r = f(t) starting 
from two different values of r0 are not proportional 
to each other. Furthermore, the stress relaxation 
functions, as well as the flow curve in the steady 
flow, depend, in general, on the previous rheological 
history of the specimen. But it is supposed here 
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that such dependence can be neglected, namely, 
that there is a one-to-one correspondence between 
the relaxation stresses and the times “t,” as well as 
between the steady stresses TO and the correspond- 
ing shear rates i.0. Actually, this hypothesis is 
not very restrictive: it means that the steady flow 
is continued until an asymptotic steady state is 
reached which is no longer dependent on the previ- 
ous history of the specimen; the only condition is 
that during the long-lasting steady flow t,he speci- 
men does not undergo any chemical or structural 
change such as oxidation, degradation, or cross- 
linking. 

CALCULATION OF THE STORED ELASTIC 
ENERGY 

Let us first consider the general differential 
equation of a relaxation process in the absence of 
outer forces: 

7 + q ( d r / d O  = 0 

where q is the viscosity which is effective in the 
relaxation process. It cannot be supposed, a priori, 
that this viscosity is equal to the one measured in 
the steady flow; furthermore, this viscosity in 
general is not a constant but may vary as a func- 
tion of the rate of shear. The stress-strain rela- 
tionship, too, can be different from the simple 
linear eq. (3). 

(5) 

The stored elastic energy is given by 

W = J,’” r d y  = J: r (dy /d t )d t  (6) 

where yo is the steady state strain. 
Then, taking into account eq. ( 5 ) ,  we have 

W = - s,” r*jdt = s,” ( r ’ /~ )d t  (7) 

To calculate W it is necessary to know the stress- 
strain relationship and the relationship connecting 
the viscosity to the rate of shear. 

Let us now consider, in the graph of the experi- 
mental stress relaxation function r = f(t), the area 
A limited by the graph itself and the coordinate 
axes. This area is: 

With constant viscosity, it will be 

A = qyo (9) 
This area A will be called the “relaxation area.” 

It has the dimensions of a viscosity and when multi- 
plied by a rate of shear (a reciprocal time), it has 
the dimensions of a stress (or of an energy per unit 
volume). 

In a similar manner, the functions A(1) and A(r )  
can be defined; when the stresses diminish to zero 
by t --t 00 , it is seen immediately that 

w = sor, A ( d d ( T / T )  UO) 

W = (l/q) s,’” A ( r ) d r  (1 1) 

and, for constant viscosity, that 

As was foreseen, in order to calculate the stored 
elastic energy it is necessary to know the internal 
apparent viscosity q (or the relationship between 
stress and rate of shear) during the relaxation 
phenomena. 

A general procedure based on trial and error can 
be outlined as follows. 

A particular relationship connecting q and + is 
assumed (e.g., the same that results from the flow 
curve of the steady state). By means of eq. (7) or 
( lo) ,  a number of values of the energy W are calcu- 
lated from the different experimental stress relaxa- 
tion graphs corresponding to different values of 
the initial stress 7 0 ,  and a function W ( T )  is stated, 
connecting the stored energy to the stress. 

But 

dW/dr = ( d W / d y ) ( d y / d r )  

and, since it is 

d W / d y  = 7 

it will be 

d y / d r  = ( l / r ) ( d W / d r )  (12) 

By integration of eq. (12) and under the bound- 
ary condition that when 7 = 0, y is 0 also, a stress- 
strain relationship y ( r )  can (at least in principle) 
be obtained. By using this last relationship and 
the formerly assumed one concerning q(i.), the dif- 
ferential eq. (5)  can, in principle, be resolved, and a 
stress relaxation function r = f ( t )  is obtained, 
which must be the same as the experimentally de- 
termined one. 

If the calculated and the experimental stress re- 
laxation function do not agree, the viscosity func- 
tion q(+)  is changed, new energy values W are 
calculated as above, and a new elastic function 
y ( r )  is determined. A new stress relaxation func- 
tion is obtained. The trials are repeated until the 
experimental and the calculated relaxation func- 
tions do agree. 

Such a procedure shows a number of drawbacks: 
it is not always practically feasible, it is too long, 
and it is difficult to obtain a set of W values suf- 
ficient to give a good determination of the elastic 
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function; furthermore, arbitrary factors are still 
present in the calculation of the absolute energy 
values. 

It appears, then, that the procedure outlined 
above is not convenient. Other methods of evalua- 
tion of the stored elastic energy will be outlined in 
the following; they are less objective, but much 
more easily carried out. 

The quantities obtained by means of such 
methods cannot yet be assumed to be the true 
values of the elastic energy; nevertheless, they can 
be considered parameters of elasticity which, as 
will be shown in some experimental instances, ap- 
pear to have some practical meaning in the charac- 
terization of polymers. 

LINEAR APPROXIMATION 

Let us suppose that, at a given temperature, 
through the calculation of the relaxation spectra, a 
set of linear elementary Maxwell bodies coupled in 
parallel has been defined, each consisting of a 
spring having a compliance J ,  and of a dashpot 
having a Newtonian viscosity i t ,  hence a relaxa- 
tion time X i  = J & ;  this system, at a given value 
of the initial stress 70, relaxes in the same way as 
the molten polymer. 

. In  the steady state each elementary Maxwell 
body shall withstand a stress Tof while its spring 
will extend corresponding to a strain yor = Jt70i = 
foxi. It is obvious that 

c Tof = 70 and c q L  = 70 

where qo = T,,/+,, is the steady state viscosity of the 
real polymer. 

During the relaxation, the stress 7, of each ele- 
ment must relax according to the law 

i z 

Tt = 7 O i  exp { - t / ~ i )  

and the total stress, 

T = f(t) = Ci7oi exp { - t / X i )  (13) 

coincides with the stress relaxation function which 
was actually found. It is immediately seen that 
the total elastic energy stored within the system of 
Maxwell bodies is given by 

WM = f d / 2  (14) 

where A is the relaxation area defined by eq. (8). 
The same result is obtained in the case of a con- 

tinuous distribution of elementary Maxwell bodies 
characterized by a relaxation function, 

H(X) = XG(A) = q(X) 

defined within the limits X I  and X2, where it is 

.(A) = ?oT(X) = 

Then the elastic energy is 

WM = Jc W(X)dX = (‘/2) J:* [ T ’ Q ) / G ( X ) ] ~ X  

= ( I / * ) fO2  J? XH(X)dX 

but 

A = $,” ~ d t  = S,” dt Jc T ( X ) ~ X  

= ?o &” dt J? H(X) exp { -t/X)dX 

= fo  Ji’ XH(X)dX 

Hence 

= ?oA/2 

Thus, the elastic energy stored within a system of 
elementary linear Maxwell bodies, which relaxes in 
the same way as the real polymer (at a given value 
T~ of the initial stress) and exhibits, in the steady 
flow, the same viscosity qo (at the same rate of shear 
yo), can be calculated from the relaxation area 
without one’s knowing the relaxation spectrum or 
the relaxation function. In general, the real sys- 
tem is not linear; i.e., neither are the springs 
Hookean nor the dashpots Newtonian. Hence, a t  
different values of the stress 70, the corresponding 
systems of the 701 and of the X i  are different. 

Actually, it was found in most experimental in- 
stances that a t  different TO values the X t  values 
change but little while the corresponding TO, are not 
proportional to each other, those corresponding to 
the largest X i  being nearly independent of bhe T~ 

(when this latter is over a given limit). 
A more detailed analysis of the evolution of the 

roi and Xc is not within the aims of the present work. 
The following procedure is suggested. 
From the relaxation areas, the values of the W M  

are calculated by means of eq. (14) for different 
temperatures and different initial stresses 70. We 
can thus define a single energetically equivalent 
Maxwell body, consisthg of a dashpot of viscosity 
qo and of a Hookean spring of compliance: 

J ,  = 2We/To2 = (foA/702) (15) 

storing the same amount of elastic energy as the 
system of Maxwell bodies relaxing in the same way 
as the real polymer. According to eq. (4) we can 
also define the ratio of the stored elastic energy to 
the power dissipated in the steady flow: 

W,/P = Xw/2 = Jwio/2 
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which is the half of the relaxation time of the ener- 
getically equivalent Maxwell body. 

In most instances, at a given temperature, the 
log-log plot of J, versus 7 0  was found to be fairly on 
a straight line. This fact suggested a further step 
in the analysis. 

NONLINEAR MODELS 

Let us suppose that, during the relaxation 
phenomena, the stress-strain relationship is not 
linear but is Yepresented by an equation such as 

y = Kra (16) 

The stored elastic energy, under the hypothesis of 
constant viscosities, will then be given by: 

W’ = (&/a + l)KrO(a+l) = (a/a + l)-joA (17) 
where ro is the maximum stress (thus the initial 
stress in the relaxation phenomena). 

The quantity defined by eq. (15) becomes: 

J,’ = 2W’/ro2 = (2a/a + l)KrO(OL-’) 

Hence the slope of the log-log plot of J, against 70 

(which was actually.found to be in most instances a 
straight line) will give the value of the exponent a, 
and a power correction factor 

5 = 2a/a + 1 (18) 

can be determined from such plots. 

J,, namely: 
We can calculate the “corrected” values of the 

J,’ = ( W a  + l ) ( - j O A / ~ o ~ )  = €Jw 

Such L‘corrected” values, too, cannot be assumed to 
be the true values of the stored elastic energy. 
Nevertheless, the parameters a or 5 will be assumed 
to characterize the degree of linearity of the elastic 
components in a molten polymer. The elasticity is 
linear when a = 1 or E = 1. We also can define a 
nonlinearity exponent of elasticity, (1 - a), which 
is zero for linear polymers and is measured by the 
slope of the log-log plot of J, versus ‘ro. 

The analytical procedure outlined above has 
been applied to many different polymers, mostly of 
the olefinic and diolefinic type. It was found that 
the consideration of the J,, A,, and CY has proved 
to be useful in the polymer characterization. The 
results concerning some samples of high- and low- 
pressure polyethylenes and of natural rubber are 
given in Table I. 

EXPERIMENTAL 

The measurements were made with a Kepes con- 
sistometer of the cone-plate type, at  shear rates 
ranging from 5 X up to 3 see.-’, at  160, 180, 
and 200°C. The samples were whole polymers 
such as the following: 

High-pressure polyethylene (HPP) having a melt 
index of 2 and an intrinsic viscosity (measured in 
xylene at  75°C.) of 1.05 dl./g.; the inhomogeneity 
ratio ( M w / M n )  has been evaluated, by fractiona- 
tion, as 3.3. 

A low-pressure polyethylene (LPP I) of intrinsic 
viscosity (in tetraline at 135°C.) 1.30 dl./g. 

Another low-pressure polyethylene (LPP 11) 

TABLE I 

Samples 

High-pressure 
polyethylene 
(HPP) 

Low-pressure 
polyethylene, 
sample I 
(Lpp 1) 

Low-pressure 

Nonlinear 

viscosities, viscosities‘ Jwb104, hub, elasticity, 
Intrinsic Melt exponent of 

dl . /g .  X 10-3, poise cm.2/dynes sec. (1 - a) 
1.05 200 5 . 4  42 +0.60 

1.30 100 0.6 2 + O .  50 

1.70 800 3 .5  80 +0.05  

Pseudo- 
plasticity 
exponenta 

n 

0.40 

0.40 

0.50 
polyethylene, 
sample I1 
(LPP 11) 
Natural 1.80 800 27 370 -0.50 0.60 
rubber 
(NR) 

a The melt viscosities are measured a t  18O”C., under a constant rate of shearhof 0.01 sec.-l. 
b The values of J ,  and A, are those obtained at  180°C. and for an initial steady-state stress of 5 X lo4 dynes/cm.*. 
c The values of ( 1  - 01) and n are those observed a t  180°C. 
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Fig. 1.  Flow curves at 180OC. 3 4 5 @ynes/c 

Fig. 3. Parameters J ,  at 180°C. 

Fig. 2. Relaxation times at 180°C. 

having an intrinsic viscosity (in tetraline at  135°C.) 
of 1.70 dl./g. 

A specimen of natural rubber (NR) (unvul- 
canized) having an intrinsic viscosity (in toluene a t  
25°C.) of 3.27 dl./g. 

In the case of the natural rubber, for a good re- 
producibility of the experimental results, it was 
found that the specimen had to be kept under 
vacuum at 120°C. for 24 hr. After this time the 
intrinsic viscosity dropped to only 1.80 dl./g. 
Since this decrease of intrinsic viscosity was not ac- 
companied by a decrease in melt viscosity, the 
specimen apparently had undergone a slight cross- 
linking. 

The flow curves of the specimens a t  180°C. are 
given in Figure 1. 

Stress relaxation measurements have been made, 
starting from different values of the steady-state 
stresses. Some examples are given in Figure 2, of 
the measured relaxation times (at 180°C.). 

The relaxation areas were calculated, and the 

9 

Fig. 4. Parameters A,, at 180OC. 

J,D and X, parameters a t  180°C. were obtained; 
they are plotted in Figures 3 and 4. 

From the data in Table I it can be shown that 
the elastic components in the molten HPP are 
much larger than those of LPP I since, by melt vis- 
cosities of the same order of magnitude the J, of 
the former is about 10 times larger than that of 
the latter. The difference of the pharacteristic 
times A, is larger; namely, by equal values of 
the steady-flow stress, the elastic energy stored 
within HPP appears to be about 20 times larger 
than within LPP I. Similarly, although the 
melt viscosities are nearly equal, the natural rub- 
ber shows J, and A, much larger than LPP 11. 
However, there is a qualitative difference; namely, 
the natural rubber has a negative value of the elastic 
nonlinearity exponent. 
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The greater elasticity of the HPP is probably 
related to long branching, a characteristic feature of 
this polymer (the branching parameter, according 
to Beasley, has been evaluated as 0.28 in the case of 
sample HPP). 

It will be investigated in subsequent work 
whether the greater elasticity of the rubber and its 
negative elastic nonlinearity exponent can be 
interpreted as a consequence of the crosslinkages. 

Thus it appears that this kind of evaluation of 
the stress relaxation phenomena, based on the con- 
sideration of the stress relaxation areas, can give 
some information of the structural properties of 
polymers. 
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Synopsis 
When a steady viscous flow of a molten polymer is sud- 

denly stopped, the stress r can be recorded as a function of 
the time t .  By means of inverse Laplace transforms, a 
system of linear Maxwell bodies relaxing in the same way 
can be defined. It is shown that the elastic energy W,,, 
stored within this system is equal to .ioA/2, where +, is the 
rate of shear of the steady flow and where 

A = JOm rdt 

is the “stress relaxation area.” Thus, for a calculation of 
W ,  the inverse Laplace transforms are not needed. Then, 
the following parameters are defined: (1) the shear com- 
pliance J,, (2) the relaxation time A, of a single Maxwell 
body storing the same energy W ,  under the same steady 
viscous flow (A, is also equal to the double of the ratio of 
W ,  to the power dissipated in the steady flow), and ( 3 )  a 
“nonlinearity exponent of elasticity” given by the slope 
of the log-log plots of the J ,  against the initial stresses. 
Stress relaxations in low- and high-pressure polyethylenes 
and natural rubber have been measured by means of a cone- 
plate consistometer. The above-defined parameters are 
calculated and discussed as possible means of characterizing 
the polymer structure. 

RQum6 
La tension de rBlaxation 7 qui se manifeste lorsque 1’6coule- 

ment continu visqueux d’un polymere fondu est soudaine- 
ment arr8tB peut &re enrBgistrBe en fonction du temps t .  
Par des transformations inverses de Laplace on peut dBfinir 

un systEme de corps linBaires de Maxwell B rBlaxation simi- 
laire. On dBmontre que 1’6nergie Bastique W ,  accumulBe 
dans ce systeme est Bgale B 1;,A/2, oh YO est le gradient 
de la vitesse de deformation (dans 1’6coulement continu) et 

A = so” rdt 

est “l’aire de relaxation.” On voit que pour caculer Wn/ 
il n’est pas necessaire de recourrir aux transformations 
inverses de Laplace. On peut definir de cette fapon les para- 
metres suivants: (1) le module de deformation Jm; ( 2 )  la 
constante de temps A, d’un seul corps de Maxwell qui peut 
accumuler la m8me Bnergie W M  suite au m&me Bcoulement 
visqueux; ce A, est Bgal A deux fois le rapport entre W ,  et 
la puissance dissipBe au cours de cet Bcoulement; ( 3 )  un 
“exposant de non-linearit6 de 1’6lasticitB” donne par la 
pente du diagramme de log J ,  en fonction du log de la 
tension initiale. On a mesure des tensions de rBlaxation 
(avec un consistomhtre caneplan) pour des polykthylenes 
ii basse et  B haute pression et  pour du caoutchouc naturel. 
Les parametres dBfinis ici ont BtB calculds, e t  on discute leur 
utilisation pour la caractkrisation de la structure dea poly- 
meres. 

Zusammen fassung 
Wenn das stationare, viskose Fliessen eines geschmolzenen 

Polymeren plotzlich unterbrochen wird, konnen die entste- 
henden Relaxationsspannungen als Zeitfunktionen = f(l) 
dargestellt werden. Mittels reziproker Laplace-Transforma- 
tionen, kann ein System linearer Maxwell-Korper angegeben 
werden, deren Relaxationsspannungen denselben zeitlichen 
Verlauf aufweisen. Es wird gezeigt, dass die in diesem 
System gespeicherte elastische Energie W ,  gleich ToA/2  
ist, wo 90 der Geschwindigkeitsgradient der Dehnung durch 
viskoses Fliessen und 

A = $,” rdt 

die “Relaxationsflache” ist. Es kann also W,  ohne Laplace- 
Transformationen berechnet werden. Die folgenden Param- 
eter konnen definiert werden: ( I )  der Nachgiebigkeitsmodul 
J,, ( 2 )  die Relaxationszeit A, eines einzelnen Maxwell 
Korpers, in welchem dieselbe elastische Energie W ,  infolge 
des gleichen stationaren viskosen Fliessens gespeichert wird; 
weiter ist A, gleich dem Verhaltnis von WU zu der in der 
Zeiteinheit durch das viskose Fliessen verbrauchten Energie, 
und ( 3 )  ein “Exponent der Nicht-Linearitat der Elastizi- 
tat,” der durch die Neigung der doppeltlogarithmischen 
Auftragung von J ,  gegen die anfangliche Spannung bes- 
timmt ist. Die Relaxationsspannung von Hoch- und 
Niederdruckpolyathylenen sowie von natiirlichem Kaut- 
schuk wurde mittels eines Kegel-Platte-Konsistometers 
gemessen. Die Anwendung der hier definierten, berechne- 
ten Parameter zur Charakterisierung der Polymeren wird 
besprochen. 
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